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Collective Electronic Oscillators for Second-Order Polarizabilities of Push-Pull
Carotenoids’
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The first off-resonance hyperpolarizabilitie®(Q)) of bisubstituted carotenoids are computed and analyzed
using a quasiparticle, collective electronic oscillators (CEO) representation. The few oscillators which dominate
the response are identified by solving the time dependent Haiffreek equations for the reduced single
electron density matrix. The variations of these oscillators and the relevant anharmonicities with bridge length
are studied. The present approach does not suffer from the difficulties which prevent the development of a
simple intuitive picture in the commonly used sum-over-states expressions (i.e., strong interference effects
and unphysical size scaling of various contributions). Displaying the CEO in real space provides an intuitive
picture of the origin of the nonlinear response and the scaling and saturati{)dbr large sizes.

I. Critical Survey of Quantum Computational Techniques selection rules in spectroscopy are operational to determine the
in Molecular Engineering allowance of a transition but fail to account for its strength.

It is the purpose of this work to apply tlwellective electronic
oscillators (CEO) framework toward the evaluation and inter-
pretation of hyperpolarizabiliti€s:.1° The classical anharmonic
o2 . _ oscillator picture proposed by Bloemberdkstands-out as an

Practical implementation and success of a molecular engi- g1y attempt in this direction based on the extension of the
neering approach rests on the reduction of an abundance of| qrentzLorenz harmonic oscillator approach of linear proper-
structural and spectroscopic features down to a limited numberiod2 \which has served throughout almost four decades of
of parameters. These must embody the essence of the mechg;,niinear optical material research as a useful guideline. It was
nisms underlying the optical phenomena of interest and Sh°“|dprecisely the deviation of many organic materials from Miller
furthermore be amenable to chemical intuition so as to provide s \vhich had pointed-out the interest of molecular materials for
practical guidelines toward synthesis and subsequent efficiencyg -, application314 6 is defined as the ratio of the®
optimization. A priori complex computational methods are then 4 dratic susceptibility of a given material over a cubic product
amenable to much simpler tractable and insightful models. ¢ its |inear 4@ susceptibilities atw and 2v. Whereas its

As most obvious examples of such comprehensive features,magnitude does not deviate by more than a factor of 2 from an
symmetry related considerations have been shown throughoutayverage value of % 10° for inorganic materials, it can surpass
the dEVE|0pment of this field to play a basic role. In the case of this standard average by as much as 2 orders of magnitude in
the quadratic process, the well-known constraint of departure grganic molecule based compounds. This deviation is an
from centro-symmetry provides a stringent prerequisite all the ndication of a much higher inelastic constant for organics than
way to the more elaborate 2-D and 3-D multipolar symmetry for inorganics in the anharmonic oscillator picture for electronic
considerations currently under investigatfoi. Such consid-  sysceptibilities. This model is based on the assumed existence
erations have indeed highlighted the role of multiple charge of a classical anharmonic restoring potential experienced by
transfer and the importance of the relative positions of the electrons as they are driven out of mechanical equilibrium by
various donor and acceptor groups as well as that of the g external field. Within this model, polarizabilities of arbitrary
polarizable connecting moieties between such groups. Thegrgers can be connected to derivatives of the potential of the
paradigm in the domain of quadratic molecular nonlinear optics same order taken at mechanical equilibrium which then serve
is thus currently shifting from the rodlike paranitroaniline dipolqr as empirical parameters. Within this picture, the second order
template to a cube or more generally a rhombohedron with gerivatives lead to three basic linear oscillator frequencies which
alternating donor and acceptor functional groups at the cornersgppear in frequency dependent resonant denominators. This
and center abiding to tetrahedral geometry, of which the earlier gomewhat empirical model does not reflect the basically
PNA template appears to be a specific cad&Vhereas such  qyantum nature of light-matter interactions at the molecular level
powerful symmetry-related features have indeed provided gng cannot be expected to provide more than basic trends and
stringent guidelines, they still fall short of providing quantitative  5rqer of magnitude agreements. The model has often been used
information as to the magnitude of phenomena very much like ¢, qualitative back of the envelope estimates but was not

considered a rigorous approach with quantitative value.
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The CEO approach retains the simplicity of the anharmonic
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The design of new molecules with large optical nonlinearities
is crucial for a broad range of applications to optical signal
processing and telecommunicatibr.
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number of quantized electron oscillators. Moreover, these are extracted from electric field induced second-harmonic generation
not a priori or empirically given as in the earlier classical measurement$ 3¢ which, under poling of molecules by an
anharmonic picture but derived from the full Hamiltonian of externally applied voltage, provide the projection of the vector
the light-molecule system. Our primary goal in this study is to part of § on the ground-state dipojey. An alternative more
explore the possibility of extracting from the full set of electronic recent technique uses the more versatile harmonic light
anharmonic oscillator solutions of the Liouville equation driving scattering’-4! which provides more tensorial information than
the density matrix of the molecular system under coherent the former because of its less symmetry-constrained configu-
illumination, a limited number of such oscillators capable of ration thanks to the absence of an electric poling field. Validity
accounting with reasonable accuracy for the overall nonlinear of the model can then be checked by comparison ofuthie
quadratic susceptibility; we further attach inasmuch as possibleand Ag values resulting from application of the two-level
chemically intuitive significance to these relevant oscillator expressions to the experimentaland § values with those
modes for a given series of molecules deriving from a common directly inferred from the arsenal of complementary spectro-
pattern. scopic and dielectric experiments as listed above. Results are
Several other approaches are commonly applied toward thegenerally satisfactory in situations whereby the upper harmonic
quantitative estimation of nonlinear optical susceptibilities. One photon energy 2w is close enough to the absorption band so
of the most commonly used is the sum-over-state formafisth that other potentially contributing excited states can then be
derived from Ward’s perturbative express@nt was however Safely ignored. It is however necessary to introduce further line
more successful in accounting for the experimentally determined broadening mechanisms (e.g., excited-state lifetimes and pure
magnitudes of susceptibilities than in providing instrumental dephasing) to account for the resonant or quasiresonant nature
guidelines for molecular engineering. This is due to the highly Of the excited-state population procé34? The limitations of
numerical nature of this approach whereby precision is attachedsuch an approach have been recognized at an early stage in the
to the dimension of the Hilbert space of representation and to context of cubic nonlinear processes where contributions to the
the number of singly and eventually multiply excited configura- cubic hyperpolarizabilityy of four-photon Ward diagrams
tions participating in the expansion. A quantitative analysis connecting the lower lying excited state to higher lying ones
aiming at identifying those states which significantly contribute Play an important and sometimes dominant rgi¢
to the full perturbation expansion has been proposed and applied Moreover, and still in the realm of quadratic nonlinearities,
to the quadratic and cubic polarizabilities of standard charge it was showA® 48 on the basis of joint spectroscopic and
transfer in aromatic moleculé2° Various rational ways to ~ symmetry considerations that a minimum of three levels are
condense the information have been proposed in order to singleneeded to account for the quadratic nonlinearity of octupoles
out and extract possibly dominant excited-state contributions due to the intrinsic 2-fold degeneracy associated with the
to such an expansion so as to be able to eventually relate theséreducible representations of the typi€afor E') labeled excited
to dominant molecular features. In view of the empirical states participating in the 3-fold symmetry octupolar charge-
evidence of the crucial role played by charge transfer in transfer process. A formal link between the minimal dimen-
guadratic optical polarizabilities as well as of the occurrence sionality of the excited-state Hilbert representation on the one
of a clear linear spectroscopic signature of derexceptor hand and the rank of the physical tensorial property of interest
charge transfer in the form of a dominant charge-transfer band (e.g., 3 for tensof) can be found in ref 48. Proposition of other
in the UV—visible absorption spectrum of the species of interest, “minimal basis states” strategies have been inspired by the
it was naturally proposed at an early stage to model the pNA development of multipolar charge-transfer candidate molecules
template as well as related rodlike dipolar donacceptor based on a generalized Mulliken scheme involving a neutral
conjugated structures by a two-level system. This approach hasvalence band state connected to a series of charge transfer states
been implemented by way of extending to nonlinear optics according to the multiple substitution pattern of the 2-D and
Mulliken’s classical approach of linear properfie¥in terms 3-D multipolar moleculé?50In particular,3 properties of 2-D
of two or three resonant mesomeric structures, namely, the 3-fold symmetry octupoles have been shown to satisfactorily
neutral state <> A), the direct D* — A7), and eventually abide respectively to a four states (VB-3CT model Hamiltonian
the inverse D~ <— A") mesomeric representations of the based on the three charge-transfer excited states along the three
molecule. It is then a simple matter to evaluate higher order blades of the trigonal octupole and the neutral “valence band”
molecular polarizabilities within such a two-state picture leading ground state)3 properties of 3-D tetrahedral octupdlesiere
to a (2x 2) Hamiltonian with two eigenstates meant to embody described using a five state (VB-5CT model with four charge-
within a so-called “two-level model” essential properties of the transfer excited states along the four directions from the center
ground and charge transfer states as well as their contributionof a tetrahedron to its ends plus the neutral valence band ground
to the quadratic polarizabilities26 state). In the realm of inorganic solids, both dieletric and
To fit experimental data into this model and check its validity, Semiconducting, the Philips and Van Vechten métlich as
poy, the transition dipole of the charge transfer excitation (or applied to chalcopyrites and other classes of oxyde cry3tals
equivalently its oscillator strength) ansy = g1 — poo, the and semiconductot$53is based on the utilization of a reduced
difference between ground and excited-state dipole moments,number of structural bonding features such as ionicities and
can be inferred indirecﬂy from the experimenta] values of the electron affinities or overlap factors of the connected atoms.
linear and quadratic polarizabilitiesand$ as modeled within ~ This approach has been successful in outlining an optimal
the two-state frame. Alternatively, they can be obtained more combination of donor and acceptor atoms to enhag@efor
direcﬂy from a rich and purpose|y redundant combination of mineral solids Ieading to similar trends as were prOpOSEd later
experiments such as real and imaginary linear index measure4n the context of molecules.
ments in solution and solids by spectroscopic ellipson¥étry, This approach is particularly useful for the near resonant
linear absorption spectroscopy, solvatochronimeasurement  response but becomes tedious in the off-resonance regime where
of the ground-state dipole moment such as the Guggenheimmany eigenstates contribute. A few-level model which artifi-
capacitive method® 3! or electroabsorptiof?32 3 can be cially removes most eigenstates involved in the nonlinear
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response is commonly used. Although different variants of this um window of silica fibers an@ in the tens of GHz microwave
approach have proved somehow useful within the reduction bandwidth®® whereas typical charge-transfer resonances, in the
scheme aiming at the identification of a limited set of parameters 500—-600 nm range for nonlinear chromophores tethered to a
believed to play a significant role in optical processes at the transparent polymer backbone, stand far above the infrared
molecular level, their limited validity, mainly restricted to the carrier photon energy. Preliminary to electrooptic measurements
field of resonant processes, therefore falls short of providing a which required a somewhat involved permanent poling proce-
dispersion free guideline that would also apply to the nonreso- dure, it is customary to scan candidate molecules via a second-
nant parametric regime whereby purely virtual transitions are harmonic generation experiment in solution which leads to the
participating. A typical approach which may be applicable to Bsne(—2w;w,w) tensor. In sharp contrast wieo, the fsne
off-resonant conditions, however, not to resonant ones, is basedensor is quasiresonant as the 2equency comes more closely

on Unsid approximatior?>=57 which consists of averaging the to the onset of absorption than in the electrooptic case.
“details” of individual excited states by reducing their full Regardless of other deeper fundamental reasons, the need for a
manifold into a single equivalent excited state, the practical single framework capable of consistently accounting for both
condensation being dictated by the f-sum rule. It has been shownresonant and off-resonant regimes appears thus particularly
in this context that nonlinearities can be connected to multipolar striking in order to be able to match the needs of current
moments of the ground-state charge density with, for example, experimental methodology in the realm of electrooptic molecular
o proportional to the quadrupolar an@ to the octupolar engineering.

moment. Recent testing of this approach on the basis of ) i o
experimental charge density determinations from X-ray diffrac- !I- Electronic Oscillators and Molecular Polarizabilities in

tion studies in single crystals have however pointed out the the CEO Framework

limitations of this approach even in the nonresonant regime Assuming a two-level model, the two lowest order off-
where it should be in principle applicatiie. resonance polarizabilities have the following form:

A totally different approach, known as the finite-field method,
has been applied early $to the evaluation of static (e.g., zero
frequency) hyperpolarizabilities of charge transfer systems and
is being routinely implemented in quantum computer packages.
Rather than using a perturbative treatmelat @ard, it is based  peec andpugyg are respectively the permanent dipole moments of
on the direct computation (e.g., iterative diagonalization) of a the ground (g >) and the excited |¢ >) states,uge is the
full self-consistent Hamiltonian accounting for the electronic transition dipole moment between these two states,capds
systems and nuclei, which includes a dipolar coupling energy the transition frequency®! Considering a family of doner
term W = —u-E. It therefore allows us to evaluate all field- bridge—acceptor moleculeg(0) has two factors with opposite
dependent observable quantities, including the induced dipolescaling as the length of the bridge (the number of double bonds,
u(E) or the field-dependent energy. The accuracy of this N) is increased:pge/wgs grows~ N, whereas fee — Hgg) ~
evaluation depends critically on the numerical precision of the 1/N. This canceling of a diverging and vanishing factors prevents
diagonalization procedure as well as on the dimension and naturean easy intuitive prediction of the evolution of the properties
of the atomic orbital space sustaining the molecular orbital wave with N, making it especially difficult to predict and rationalize
function Hilbert space within a Roothatartree-Fock picture. the saturation ofg(0) for large bridge lengths. Moreover,
Differentiation of the three components of the induced dipole retaining only few levels may not be justified theoretically in
or of the field-dependent energy with respect to the compara- the off-resonant regime.
tively weak applied polarizinde field components leads, in a The oscillator quasiparticlg picture used in this article has
Cartesian framework, to the tensorial coefficients of hyperpo- numerous conceptual and numerical advantages over the eigen-
larizabilities of successive orders (this is best approximated by state representati&f® and automatically cures the difficulties
considering differences of the induced dipole under symmetrical outlined above. Rather than considering a basis set of eigenstates
finite field steps of different small magnitudes). This method of the Hamiltonian to represent theave function we use a
solely focuses on ground-state wave functions and therefore doeasis of CEO to represent threduced one electron density
not incorporate explicitly dipolar transitions between various matrix®63¢6 In contrast with the eigenstate representation, it
states, contrary to the perturbative sum over states approacthas been shown that only a limited number of these oscillators
whereby excited states and their couplings are the basicare involved in the response. We thus obtain a simple, classical,
ingredients. This method is not designed to help identify those Yet fully microscopic picture of the nonlinear optical process.
excited states which contribute significantly to the nonlinearity The few-oscillator model provides an alternative to the few-
of interest. It is nevertheless well tailored for estimating the level model. By displaying the oscillators in the atomic basis
magnitudes of static polarizabilities, in contrast with methods Set, we obtain a highly intuitive picture of the behavior of the

based on a reduced number of excited states which are likelymolecule during the course of the nonlinear optical response.
to provide better results at the vicinity of a transition. The relevant regions of the molecule and their couplings and

The CEO formalism used here provides a more general coherences are clearly identified, resulting in a global picture
of the dynamics of optical excitations in terms of a set of

approach which is applicable with equal relevance far from ing f onal The d £ invol f
resonance as well as in quasiresonant configurations, and itg"t€racting functional groups. The degree of involvement o

application would be of major interest in particular in order to various regions can be visualized, resqltlng In a new, de.eper'
account for both nonresonant electrooptic effects and the and highly intuitive approach for.the design of optlgal materials.

corresponding quasiresonant case of second-harmonic genera- The CEO appro_ach startsmwnh the reduced single-electron
tion. Indeed, applications of electrooptic polymers are mostly ground-state density matrf%;’® defined as

in demand at high bandwidth operation conditions as driven by 5 =0 Ic'e 1,0 )

an off-resonant molecular polarizabilifigo(—w — Q;w,Q) with nm grnTmTg

 corresponding to the infrared carrier wavelength in the 1.55 where ¢, and ¢, are respectively the Fermi creation and

2 _ 2
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annihilation operators (spin indices have been omitted for
brevity). 14 is the many electron ground-state wave function.
Thenth diagonal element of this matrip@pulatior) represents
the charge of theth orbital, whereas the off-diagonal element
pnm (coherencgis a measure of the chemical bond strength
between atoma andm 627172

When the molecule is subjected to a time-dependent elec-
tromagnetic field, its density matrix becomes time-dependent
as well:

P = (1)l €l Yo ®)

We then have

p(t) =p + op(t) (4)

Separating the hole-particlé)(and particle-particle/hole-hole
(T(&)) contributions todp, we obtain

p(t) = p + &(t) + T(E(D) (6)

The density matrix corresponding to a single Slater determinant
is idempotent:

p(t) = p*(t) (6)

It immediately follows from eqs 5 and 6 tha(&(t)) can be
expressed in terms df(t):

T(E) = (12— p)*(1 — VI — 489

| being the unit matrix.

The oscillator variables are the eigenmodes of the linear part
of the time-dependent Hartre€ock equations (where the terms
with (dp)?are not retained):

)

L&, 0= Q |5, 00 andL|E_ (= —Q |50  (8)
with the normalization
ME_|&o = Tr(p[E_ o &) = 1 9)

The electror-hole part of the density matrix can be expanded
as

&0 = ZD[SaZa(t) + &, 2] (10)

The oscillator amplitudes come in complex conjugate pairs
and Z and satisfy the relations_, = &, andz-, = Z.. Here,
&y is an oscillator described by the two operafgrand &;.
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where Q, is the oscillator frequencyy, g, are the anharmo-
nicities, andu, andu.s are dipole moments. These classical
equations may be rigorously derived from the quantum molec-
ular Hamiltonian, as shown in Appendix A.

The polarization (the expectation value of the dipole operator)
which is responsible for all optical signals is given by

P= ;“ﬂ%@ + ;ﬁﬂ,yzﬂzy

wherepg, defined in eq B11 represents the nonlinear depen-
dence of the dipole on oscillator coordinates. All parameters of
egs 12 and 13 may be obtained from the fully microscopic
Hamiltonian, as shown in Appendix A. Equations 12 and 13
generally have higher order terms (products of nmfigctors),
but they may be rigorously truncated for the sake of computing
low order polarizabilities. The present truncation is sufficient
for computing(0).

Equation 12 can be solved order by order in the external field
€(t), resulting in the optical response functions. For the linear
response, we have (the superscript denotes the order in the field)

(13)

FOES Z_,, 2 (14)
which gives for the static linear polarizability
Hptp
o(0) = ;— (15)
o
The second-order response is given by
P = 2;@2;52) + ;ﬁﬁ,yz(ﬂl)z(yl) (16)
Y
which yields
Mgty
BO)=—2 um (17)
Qﬂ Y

whereU, g, is defined in eq B10. The summations in eqs-14
17 run over positive values of the indices.

Equation 17 employs the complete basis set of-spiitals.
If the electrons are counted in pairs, a factor 2 must be added
in this formula. This point should become clear in the following
section and the appendix. Moreover, when computing off-
diagonal components of thg(0) tensor, eq 17 must be
symmetrized over the tensorial components of the incoming
field. Adopting a tensor notatiofi(O);j, €j®ex is the incoming

These operators may be combined to form real operators thatfield ande; is the outgoing field.

represent the oscillator coordinates and momenta:

P, =

_ 1 . e et
_ﬁ(§“+§“)’ ﬁ(fa &)

The electronic excitations are now described as classical
anharmonic oscillators with amplitudes. Using a basis set
with Ny occupied and\, unoccupied molecular orbitals, there
are Np*N, oscillators which come in pairs and satisfy the
following equations of motiof§?-68

(11)

9
ot Q.z, — €(t)p, — e(t);ﬂa,ﬁzﬂ + ;Vu,ﬁyzﬁzy
(12)

[1l. Application to Push —Pull Carotenoids

We have studied the variation of the electronic oscillators
with bridge length for a series of bisubstituted carotenoids
(CAR(j)) with a dimethylamine donor and a two cyano group
for the acceptor (Figure 1). The bridge lengfh Was varied
from 2 to 25 double bonds. This system was chosen because it
is typical of polyenic oligomers used in electroluminescent
devices? and numerous measurements have been made on these
and similar molecule&t76

We have considered carotenoids without methyl groups on
the bridge. These groups do not affg¢d) by more than 10%,
and for the most part, their effect is primarily steric rather than
inductive. Geometry optimization was done at the semiempirical
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CAR(j)
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Figure 1. Structure and atom labeling of the bisubstituted carotenoid ‘5 0 —- =
with aj double bonds bridge CAR( The atom labels = 1...3 + 13 )
are shown in the lower structure. Q
-5t . .
AM1 level using Gaussian 98.Intramolecular charge transfer 0 5 10 15 20
is very sensitive to the conformation; thus, to better demonstrate k

general trends, the aromatic ring and the polyene bridge were
constrained to be planar. The optimization was made to mimic Figure 2. Contribution of thekth oscillator to/3(0) (e A* v-2) for
the chromophore geometry in the material (by choosing the CAR(9) and CAR(25).

geometry optimization method and the constraint) even though

the computation is performed for the isolated molecule. The 0
molecules are oriented along tl@x axis, and hereafter, we
only consider the most important componefit,{0)) of the
B(0) tensor.

The INDO/S Hamiltoniaf?~8° and the dipole operator were
computed in the atomic basis set using the ZINDO code. Each
hydrogen is assigned a single s basis function, whereas carbons
and heteroatoms havl s and 3 p atomic orbitals. Because we
consider closed shell configurations, spin variables may be
eliminated and the electrons are counted in pairs. The Hartree
Fock approximation is used to compute the ground-state reduced
single electron density matripsm. Then the first 50 eigenmodes
of eq 8 are computed with the obliqgue Lanczos algorifim.
Several convergence tests were made for the number of modes
and the precision parameters required by the iterative methods.
B(0) varied by less than 5% between these tests.

The eigenmodes were then ranked according to the magnitude X . . . .
of u./Q, and only the first 20 oscillators were retained. All of 5 10 15 20 25
the necessary quantities for the calculatiof@) are obtained,
andp(0) is then computed using the first-20 oscillators. This J
reveals the degree of inV(_)Ivement .Of each oscillator in the Figure 3. Variation of the anharmonicities (e V) and dipole coupling
second-order response. Figure 2 displa§is-{(0) — A(0)) coefficients (e A) with the number of double bonds (the various

versus k, where §(0) is $(0) computed with the firstk contributions may be identified using Table 1).
oscillators. This figure shows the contribution of each additional

oscillator to CAR(9). Other sizes up to CAR(17) show a very
similar pattern (not shown). The ordering of the oscillators (by the contribution of the coupling dipojes to A(0) (a), the first

Dipole couplings

Anharmonicities

Ho/Q) does not affect the contribution of each oscillator. term coming from the anharmonicitie®) and the total3(0)
It is remarkable that only two oscillators are dominant for for the two-oscillator model @). In the upper panelS(0)
this series of carotenoids and are responsible for9@o of obtained from the two-oscillator modéellf is compared to the

B(0). The contribution of the second oscillator always has full CEO calculation involving all 50 oscillator€)). For bridge

opposite sign to the first. Hereafter, we denote the first oscillator lengths up to 11 double bonds, the two-oscillator model provides

&+ and the second—. We have therefore computed the first an adequate description. Both contributiong3(6) saturate at

off-resonance hyperpolarizability using these two oscillators. about 14 double bonds.

The variation of|Vq4,| and |ues| with the bridge length is Figure 5 depicts the ground-state density matrix (top row)

displayed in Figure 3 and given in Table 1. We note that very and the oscillator§-+ (middle row) andé— (bottom row) for

few anharmonicities and coupling coefficients are dominant. CAR(3) (left column), CAR(7) (middle column), and CAR(25)
The variation of3(0) with bridge length is displayed in Figure  (right column). They are represented in real space using the

4. The lower panel shows the second term of eq 17, representingatomic basis set (the coordinates show the atom number as given
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TABLE 1: Coupling Coefficient (e A), Anharmonicities (e V), and #(0) for CAR(j),j = 2, ..., 25
n wu+t+ wu+t— wu—— V+A++ V++— V+—4+ V+—— V—++ V—4— V——+ V——— Ba P2 Paa Q+ Q Qi3

2 —1.197 —2525 —-1.342 0.013 -2.056 1.107 0.000 —0.474 -0.146  0.145 1135 0.97 1.00 1.00 3.09 4.84

3 —1.333 —2.878 —1.631 0.055 —1.970 1.248 0.051 -0.361 -0.114 0.215 1339 1.61 140 1.40 292 4.56

4 —1.422 —3.142 —1.993 0.097 -1.817 1.304 0.015 —0.257 —0.173  0.203 1375 236 232 232 279 4.35

5 —1.463 —3.174 —2.412 0.138 —-1.550 1.207 -0.163 —-0.172 -0.352 0.026 0.922 3.16 3.24 3.24 2.69 4.20

6 —1.459 —3.248 —1.480 0.173 -—-1.435 1439 0.390 0.002 -0.258  0.522 1408 3.96 547 4.02 262 4.10

7 —1.420 —3.781 —2.550 0.200 -1.420 1.509 0.217 0.044 —0.022  0.457 1979 4.72 538 5.38 256 4.01 3.89
8 —1.356 —3.949 —3.075 0.216 —1.286 1.504 0.134 0.109-0.131  0.398 2.030 5.43 6.00 6.00 2.51 3.94 3.75
9 —1.278 —4.045 —3.448 0.224 -1.152 1.490 0.078 0.169 -0.191  0.347 2.012 6.04 651 6.51 247 3.89 3.62
10 —1.194 —4.064 —3.683 0.224 -1.018 1.457 0.034 0.220-0.223  0.291 1893 6.58 7.11 7.41 244 3.85 351
11 —-1.109 —3.540 —-3.219 0.220 -0.779 1.223 —0.054 0.222 —0.223  0.115 0.929 6.99 9.18 7.58 2.41 3.82 3.42
12 —-1.027 —4.170 —3.713 0.212 —-0.832 1.479 0.069 0.324 -0.143  0.282 1.872 7.40 7.22 8.04 2.39 3.82 3.33
13 —0.948 —4.298 —4.010 0.201 -0.765 1.493 0.047 0.364 -0.166  0.261 2,051 7.73 6.97 810 237 3.80 3.25
14 —0.874 —4.322 —4.046 0.189 -0.691 1.479 0.036 0.394-0.159 0.231 2.032 802 6.78 822 235 3.79 3.18
15 —0.808 —4.243 —3.948 0.177 —0.611 1.429 0.018 0.409-0.148 0.184 1.828 8.29 6.24 8.01 2.34 3.78 3.12
16 —0.746 —4.224 —3.410 0.165 -0.555 1.430 0.055 0.438 -0.085  0.195 1723 8.48 9.60 7.13 2.32 3.78 3.06
17 —0.689 —4.396 —3.703 0.153 -0.524 1.460 0.046 0.468 —0.094  0.186 1995 8.69 7.54 9.90 231 3.78 3.01
18 —0.639 —4.406 —3.623 0.141 -0.479 1.444 0.042 0.483-0.083  0.166 1.967 8.84 7.03 9.70 2.30 3.77 2.96
19 —0.592 —4.344 —3.471 0.130 —-0.432 1.403 0.034 0.486 —0.072  0.140 1.814 9.03 6.97 9.94 229 3.77 2.92
20 —0.549 —4.147 —-2.773 0.120 -0.383  1.339 0.045 0.478 —0.030  0.120 1432 9.15 6.87 10.15 2.28 3.77 2.88
21 —0.510 —4.442 —-3.170 0.111 -0.376  1.407 0.045 0.516 -0.039  0.131 1892 9.08 551 9.10 2.27 3.77 284
22 —0.476 —4.450 —3.095 0.102 —-0.347 1.390 0.043 0.522-0.033  0.119 1.876 9.12 495 8.84 227 3.76 2381
23 —0.443 —4.400 —2.999 0.094 -0.318 1.355 0.038 0.519-0.028  0.104 1773 9.16 4.08 9.71 226 3.76 2.78
24 —0.414 —-4.202 —2.275 0.087 —0.283 1.291 0.041 0.504 —0.004  0.087 1354 9.21 452 9.38 225 3.76 2.75
25 —0.387 —4.473 —2.676 0.080 —0.280 1.348 0.042 0.534-0.010  0.095 1.790 9.23 526 9.91 225 3.76 2.72

T T y T y the donor to the bridge for short bridges and from the middle
10 1 _ A oeoooo i of the bridge to the acceptor and its vicinity for longer bridges.

. Figure 6 displays the variation of the frequencies of the
oscillatorsé&,, &—, and &3 with the number of double bonds.
They are noted2, Q_, andQ+3 (£+3 is an oscillator defined

_ below). One can note the red shift of the chromophore with
o full CEO increasing the number of double bOI’!@H; is not _dis_played

02 oscillators ] below seven double bonds; the third harmonic is yet not
, ) , , , established because the bridge is not sufficiently long to support
' ' ' ' o] this mode, s&+3 cannot yet be clearly identified.

The two-oscillator model shows the opposing effect of the
&+ and &- oscillators. With a better understanding of the
. relationship between molecular structure and CEO, it should
be possible to minimize the involvement of the oscillator in
B(0). Symmetry properties of the oscillator may be used to that
_ end, and the magnitude ${0) could then be enhanced by up
to 30% for the present system.

B(0)

| © anharmonicities
O total

p(0)
QNAO\%S%N&Q\%

IV. Limitations and Extensions of the Two-Oscillator
Model

Figure 4. Variation of 5(0) (e A2 V-2 with the number of double ) o
bonds. Figure 4 clearly shows the range of applicability of the two-

oscillator model. When the bridge length exceeds 10 double

) . bonds, the computg®(0) deviates from the full CEO calculation
in the bottom scheme of Figure 1). In each panel, the bottom pich includes all oscillators. Figure 2 shows that for CAR(25)
left corner shows the donor, the middle square is the bridge, 5 thirg mode becomes relevant. The top row of Figure 7 depicts
and the top right square shows the acceptor. the three oscillators involved for the longest bridge. The new

The ground-state density matrix is similar for all of these oscillator (denoted . 3) appears like the third harmonic &f.
carotenoids. It is pretty much localized and shows no long-  The variation of the oscillator parameters angB(d) with |
range coherence. We next turn to a closer look at the dominantshown in Figures 3 and 4 is nonmonotonic and shows an
electronic modes. Wheéin, ~ &nm, we have the creation of a  interesting fine structure. For exampf0) and the anharmo-
bond between theith and thenth atoms without charge transfer.  nicities have maxima for CAR(11) and CAR(16). This is due
Whené&mn > &nm, @ photoinduced electron transfer occurs from  to a splitting of theZ_ mode at a specific bridge length. The
the mth to thenth atom. The+ mode is primarily localized on  precise origin of this behavior requires a further study. However,
the bridge. The interactions between the acceptor/donor and theit does not affect the global trends ${0), and an intuitive
bridge decrease as its length grows (visible in the right, left picture of the evolution of this hyperpolarizability may be
top, and bottom middle rectangles of each panél). for developed without taking these effects into account. Ignoring
CAR(25) shows that the interaction between electrons along the splitting of theZ_— mode results in a more smooth variation
the bridge has a characteristic size of 15 atoms. This limit of 5(0) with bridge length. This detailed structure originates
appears in CAR(7). Thé- oscillator has a similar shape butis from the behavior of the electrons in the polyenic bridge and is
more delocalized. It shows a displacement of electrons from virtually independent of the ends. We thus expect it to be only
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Figure 5. Density matrix for the ground state and the two dominant modeg(f@y. Top row,p; middle row,&; bottom row,&_. Left, middle,
and right column: CAR(3), CAR(7), and CAR(25).

5 double bonds; thé,; oscillator can be safely neglected for most
— NLO applications, and the splitting of th&- mode can be
% ignored in the intuitive picture developed here.
: In Figure 5 we display
o 4t i
=
3 /
_ 2
§ gmn - z gmnpw (18)
{o.w}
S -
§ which provide a representation of the density matrix in the
E atomic basis set. For a better visualization of the matrix, a
2 2 . . . . . smoothing is done. The simple picture in the atomic representa-
0 5 10 15 20 25 tion was obtained at the expense of losing the sign of the various
. contributions. To show the sign &f,n,w, We need to represent
J explicitly the various orbitals s of each atom, because a direct
Figure 6. Variation of the frequencies (eV) df., £_, and &5 with summation of the contribution of all of the orbitals of each atom
the number of double bonds. is not physically meaningful. A more detailed representation

of p and the mode§ displayed in Figure 5 can be obtained as
weakly affected by the donor and the acceptor. A further study follows. Starting with the INDO/S basis, each element of this
of the unsubsituted polyenic bridge will be desirable in order basis can be written &nn,w, Wherev andw are respectively
to develop a more accurate, and perhaps simpler, model of thethe orbitals of the heavy atonms andn (s, p., py, and p). The
origin of nonlinearities in such chromophores. The action of hydrogen atoms are not shown. Figure 9 displays the resulting
the push-pull groups could then be treated as a small perturba- density matrices. Both axes first display orbitals s from atoms
tion of the parameterg(0) computed with these three oscillators 1 to n and then orbitals pwith the atoms in the same order, p
(or four whené_ is splitted) is shown in Figure 8. Because of and finally p. Each mode is how amdx 4n rather than the
molecular stability problems, chromophores used in molecular x n matrix of Figure 5. This representation retains the sign of
engineering for nonlinear optics rarely contain more than 10 the elements. However, we first examine the absolute values
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Figure 8. Variation of 5(0) computed with an extended number of

oscillators with bridge length3(0): e A2 V-2,

on a logarithmic scale in order to identify the non relevant parts

of the modes which can be ignored.

We can verify using Figure 9 that thesystem made by the
orbitals{s, p, py} and ther system made by the orbitals gre
decoupled inp as implied by the HartreeFock Hamiltonian
(the weak coupling near the dimethyl group is due to its
nonplanarity). Only ther system, formed by thp, orbitals of
all of the non-hydrogen atoms, is involved in the modes.
Hereafter we only represent the relevant pag () of the

with the previous atomic representation in Figure 7. The atomic
representation removes all of the nodes of§hmodes. These
nodes show a highly nontrivial and interesting behavior of the
electrons along the bridge. The atomic representation allows a
quick visualization of which parts of the molecule are involved
in the mode, but the orbital representation provides additional
most valuable information. Thé; mode has two symmetry
axes. The three parts of the maflg are symmetric with respect

to the diagonal elements but are antisymmetric toward each
other. The&_ mode is antisymmetric with respect to the
population elements axis. It is @rrelation mode in which

only the bonds are involved and the mean positions of the
electrons are unchanged. The symmetry properties are sketched
schematically at the bottom row of Figure 7. This picture closely
resembles the electromagnetic modes in cavities. A good
understanding of these modes could be most useful for a
description of electronic motions in polyenic bridges and for
predicting the effects of pustpull groups.

Figure 10 displays the variation of the diagonal elements
(populations) with atom number for CAR(7) and CAR(25). The
trace ofp is equal to the number of electrons on the external
shell, and the trace of the matrix vanishes. These properties
are not apparent in the figure because the hydrogen atoms are
not displayed. Atoms 19 are the donor group, followed by
the polyenic bridge, and the last four atoms are the acceptor.
(The atom numbers are given in Figure 1.) The top panel shows
the electronic charge of the prbitals of the heavy atoms. The

density matrix, neglecting the other elements, and also showenvelope ofé; and its third harmonic&.s is clearly shown.
the sign of the elements. The new representation is comparedThe antisymmetry along the diagonal axis of the m&dshould
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CAR(15)

E+ Q=233eV

s  Px Py Pz S Px Py Pz
Figure 9. Representation gb and & for CAR(15) in the orbital basis set.

CAR (7) CAR(25) finite as the molecular size is increased. Moreover, the real-

T space representation of the eigenmodes allows an easy and
net cnarge 1

‘ highly intuitive understanding of the regions involved. It can

0.2 L A net charge | ]

-0.2 - e . be useful for manipulating the properties of the chromophore
"'z - ‘«/ A &+ | (symmetry or other) in order to remove or enhance a mode.
—02 S 1 The CEO representation is a highly nonlinear transformation
0.2 A A . J‘A\/‘. [ B3 A — 2431 of the eigenstate representation of the optical response. Each
R VWA VEVA R VA st Al s e oscillator represents a manifold of transitions involving multiple

‘Zj - | T ol electron-hole pairs. It is therefore not possible to draw a one-
0L ”/\/A\/A A AT A to-one correspondence between the few-oscillator model and
-02 - ‘ s + ‘ i the popular scheme where the sum over states expressions is
0 10 20 0 10 20 30 40 50 60 truncated to include only a few dominant states. Generally the
n n dominant-state approach cannot be justified for off-resonant
Figure 10. Diagonal elementséf,,) of the density matrixe®, &, response where many states contribute. However, the few-
&+a, &-, for CAR(7) (left column) and CAR(25) (right column). oscillator picture works very well. The absence of a simple

connection is the reason we need a new language. If there was
give a zero value to all diagonal elements. This is pretty much such a connection, a new language would not be necessary. At
the case in the left part of the bridge. However the right part is the single excitation level, one can assign each oscillator with
modulated by the acceptor. Nevertheless the amplitude remainsone state. However, the CEO also includes (approximately)
very weak. The bottom three panels reveal the role of charge infinite harmonic ladders of these state.
transfer in the nonlinear response. An improved picture may be possible in which the well-
Calculations performed on longer molecules (up to 40 double ynq\yn properties (e.g., boundary conditions of the modes or
bonds) show that the present picture remains vall.d. As the brldgecoupling parameters) of the electrons in the bridge are perturbed
s oo s o empones e ey he donor and accepor groups. Such a sy might e
simp?lifying the physical picture of th(f nonlinear respoﬁse deeper properties of the molecules which appear here as the
) quasiperiodic splitting of th&_ mode or the nodes and the
symmetry properties of modes.

This study of3(0) may be extended to higher nonlinearities
such agy(0). This second hyperpolarizability is very important
for nonlinear optics, and a similar oscillator picture could be
useful for the investigation of centrosymmetric molecules with
strong cubic polarizabilities.

V. Discussion

The generic pushpull carotenoid system studied in this
article clearly shows that the first optical hyperpolarizability
can be described using a small number of oscillators: two
oscillators are enough for chromophores commonly used in NLO
engineering. For longer molecules, an additional oscillator

should be included. The oscillatory behavior wjtoes not
prevent an intuitive CEO picture. Acknowledgment. T.T. was supported by the Ecole Normale

The most important advantage of the present picture is that Sup&ieure de Cachan in France. The support of the National
it provides a link between the first phenomenological description Science Foundation and the Petroleum Research Fund admin-
of optical nonlinearities made by Bloembergen and a rigorous istered by the American Chemical Society is gratefully ac-
theoretical approach based on a full quantum chemistry calcula-knowledged. Dr. Matteo Tommasini is thanked for his help all
tion. The present work establishes a firm basis and extends thealong this work.
early empirical descriptions of nonlinear processes, and the
dynamic CEO picture is more intuitive than the static eigenstate aAppendix A: The CEO Equations
representation. The equation of motion of the oscillators is
classical. The unphysical scalings are removed, and the number We consider a system described by the following general
of oscillators involved in the calculation of the response remains molecular electronic Hamiltonia®¥:
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timn= S 70| Vi = zﬁ)Xm(l) d,  (A2)
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1 (U oLy (2)
Iry—ry

j [KIO= [ dr,dr, (A3)

t is the core-Hamiltonian describing the kinetic energy and
nuclear attraction of an electron, arig|kICI describe the
electromagnetical interactions between the electrons.

Here c: and c,, are respectively the Fermi creation and
annihilation operators with anticommutation relations

{c.c} =0, {c.g} =0where{ab} =ab+ba (A4)

The ground-state Hartred-ock density matrixp satisfies

[F(p).p] =0 (A5)
where the Fock operator is
F(p) =t+ V(p) (A6)
with
V=J-K (A7)
(Jf_))ij = (ij IkD)py (A8)
(Kp); = (iklipy (A9)

J is the Coulomb operator, arilis the exchange operator.

When the molecule interacts with a time-dependent electro-
magnetic field, its density matrix becomes time-dependent as

well and can be written as

p(t) = p + op(t)

Separating the hoteparticle €) and particle-particle/hole-
hole (T(&§)) contributions, we obtain eq 5. Using eqgs 5 and 6,
we have

(A10)

&=I[[&nplnl
T(&(t)) can be expressed in terms&{f) (eq 7). For computing

(A11)

the second-order response, it is sufficient to adopt the following

approximation:

T ~ 3£, (A12)

The time dependent Hartre&ock equations of the density
matrix are

) _ 30000 _

ot o~ [F(e)p] — €O [mpl  (AL3)

Projecting into the particlehole subspace, we obtain the
following equation of motion:

J. Phys. Chem. A, Vol. 105, No. 23, 2008701
9E

o (A14)

LE = R(E)p—n — €(t)-[n.]

where L is a superoperatorin the Liouville—von Neumann
space given by

LE =[F(p).&] + [V(E).p] (A15)
and
R(E) = [FE).& + T + [FTE)p + & — el & + T(E)]
(A16)

is the nonlinear part of the equation.
The time dependent polarization responsible for all of the
optical properties of the molecule is given by

P(t) = Tr(uop(t)) = Tr{a[E@® + TEM)}

Q, are the eigenvalues of eq 8, and we have the relafops

= &' andz, = z *. The oscillator variables are the eigen-
modes of the linear part of eq 12, and they satisfy eq 8.
Combining eqgs 10 and A14, we find thgtsatisfies (12) with

B =Tr([p.& ollp.pl) (A18)

”a,/)’ = Tr([pvg—a] [[l !gﬁ])

(A17)

(A19)

Vi, = T{ (0 J(MEE] + [Vg,aLE0) ) a20)

We next expand in powers of the external field:

2=+ + 84 (A21)
We further define
iy =THEE): iy, =3TWIIE,R1ED  (A22)

For the static second-order response, eq 12 assumes the form
Qz, =ep, + E';ﬂa,ﬁzﬁ - ;V(x,ﬁyzﬁz/ (A23)
14

The matricesp, ¢, and&, are real, and/ is a real tetradic
operator. They satisfy

~ ~ 1
Hoe =H o= Hy andl"‘*&ﬁ = éua,ﬁ (A24)

Appendix B: Computation of Polarizabilities

The TDHF equations may be solved by expanding the density
matrix in power of the external field:

E=EV+EP+ . andT(E) =T + T9¢) + ... (B1)

whereT0(£) may be expressed in terms &P using eq 12. We
thus obtain for thgth order polarization

PO(t) = Tr(uop?) (B2)
where
0p0(t) = £9(t) + TO(() (B3)
and
T =0 andT®@0) =(1 - 2p)-0)° (B4
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We need to solve the following linear inhomogeneous equation:

()
50 Lo = 0 (85)
wheren0)(t) are
1) =~ (86)

and

12 = [ V0P ),00PM)] + IVTA(1),5] —
®[p.00(®1).51,8] (B7)

It can be shown that the density matrix may be expanded as eq

10 with eq 7. In this expansiow, is an oscillator described by
the two operatorg, and &,". These operators are related to
the oscillator coordinates and the momenta by eq 11.
Equation 13 for the two lowest order static polarizations gives
expressions 14 and 16. From eq A23, we haveofor O
A0 = Ko

o (B8)

a

and

42) B U Hplt, N (l‘aﬁ + :ua—ﬁ)”ﬁ
- By ;
% QaQﬂQy QaQﬁ

Equation 15 for the off-resonant0) = o(0;0) is obtained by
substituting eq B8 in eq 14. Substituting eqs B8 and B9 into eq
16, results in eq 17 fof(0) = (0;0,0).

Here

(B9)

Ua,ﬁy = Vaﬁaf + Vmﬁ*v + VOL,* By + Va,fﬁf (B10)

v

and

ﬁﬁ,y = ﬁﬁy + ﬁﬁ*v + ﬁ*ﬁy + ﬁ*ﬂ*)f (B11)

Appendix C: Units

To get a convenient order of magnitude for the quantities
computed, we used the following units bas{s, V, A}. Here
are the relationships with other units:

(1) First hyperpolarizability:

B(0) and its contributions are displayed in e3A/=2,

1.0e BV2<432x 103 esu and 1.0x 10730 esu<>
231x 102e A3v2

(2) Dipole moment:

Dipole moments are displayed in e A.

1.0eA<481Dand 1.0 D>2.08x 10t e A

1.0e A~ 4.81x 108 esu cm and 1.& 1078 esu cm
2.08x 10 e A.

(3) Energies and frequencies are in eV.

(4) The charge is displayed in units of the electron charge, e.

References and Notes

(1) Chemla, D. S.; Zyss, Nonlinear Optical Properties of Organic
Molecules and CristalChemla, D. S., Zyss, J., Eds.; Academic Press:
Orlando, 1987; Vol. 1. For a historical account, see also: Kajzar, F.; Zyss,
J. Nonlinear Opt.1995 9, 3.

(2) Molecular Nonlinear Optics: Materials, Phenomena and Devices.
Dick, B., Stegeman, G., Twiegand, R., Zyss, J., EGhem. Phys1999
245 (1-3), 1-544.

(3) Nonlinear Optics of Organic Molecules and Polymédxalwa, H.

S., Miyata, S., Eds.; CRC Press: Boca Raton, FL, 1997.

(4) Zyss, JJ. Chem. Phys1993 98, 6583.

Toury et al.

(5) Zyss, J.; Ledoux, IChem. Re. 1994 94, 77—105.

(6) Dhenaut, C.; Ledoux, |.; Samuel, |. D. W.; Zyss, J.; Bourgault,
M.; Le Bozec, H.Nature 1995 374 339.

(7) Zyss, J. to be published

(8) Mukamel, S.; Tretiak, S.; Wagersreiter, T.; ChernyakS¢ience
1977, 277. Mukamel, S.; Takahashi, A.; Wang H. X.; Chen,Sgience
1994 266, 250.

(9) Takahashi, A.; Mukamek, S. Chem. Phys1994 100, 2399.

(10) Mukamel, S.; Wang, H. XPhys. Re. Lett. 1992 69, 65.

(11) Bloembergen, NNonlinear Optics Benjamin: New York, 1965.

(12) Rosenfeld, LTheory of electronsDover: New York, 1952.

(13) Chemla, D. SPhys. Re. Lett 1971, 26, 1441.

(14) Choy, M.; Ciraci, S.; Byer, R. LEEE J. Quantum Electrorl975
11 (Vol. QE), 40.

(15) Lalamam, S. J.; Garito, A. Phys. Re. A 1979 20, 1179.

(16) Docherty, V. J.; Pugh, D.; Morley, J. Chem. Soc., Faraday Trans.
21985 81, 1179.

(17) Kanis, D. R.; Ratner, M. A.; Marks, T. J.; Zerner, M. Chem.
Mater. 1991, 3, 19.

(18) Ward, J. FRev. Mod. Phys 1965 37, 1.

(19) Dirk, C. W.; Kuzyk, M. G.Phys. Re. A 1989 39, 1219.

(20) Kuzyk, M. G.; Dirk, C. W.Phys. Re. A 199Q 41, 5098.

(21) Mulliken, R. S.J. Am. Chem. Sod 952 74, 811.

(22) Murrel, J. N.J. Am. Chem. Sod 959 81, 5037.

(23) Oudar, J. LJ. Chem. Physl977, 67, 446.

(24) Blanchard-Desce, M.; Barzoukas, 3 Opt. Soc. Am. B998 302

(25) Wortmann, R.; Kramer, P.; Glania, C.; Lebus, S.; DetzeCihem.
Phys 1993 99, 173.

(26) Marder, S. R.; Berattan, D. N.; Cheng, L. Sciencel991, 252,
103.

(27) Toussaere, E.; Zyss, Thin Solid Films1993 234, 432; 454.

(28) Bosshard, C.; Kiafle, G.; Pfdgre, P.; Guter, P.J. Appl. Phys
1992 71, 1594.

(29) Guggenheim, E. ATrans. Faraday Sacl949 45, 714.

(30) Minkin, V. I.; Osipov, O. A.; Zhdanov, Yu. ADipole Moments in
Organic Chemistry in Physical Methods in Organic Chemistry series
Plenum: New York, 1970.

(31) McClellan, A. L. Table of experimental dipole momentree-
man: San Francisco, CA, 1963.

(32) Liptay, W. InExcited StatesLim, E. C., Ed.; Academic Press:
New York, 1974; Vol.1, p 129 .

(33) Wortmann, R.; Glania, C.; Knaer, P.; Lukaszuk, K.; Matschiner,
R.; Twieg, R. J.; You, FChem. Phys200Q 245, 107.

(34) Levine, B. F.; Bethea, Q. Chem. Physl975 65, 2429. Oudar, J.
L.; Chemla, D. SJ. Chem. Physl977, 66, 2664.

(35) Singer, K. D.; Garito, A. FJ. Chem. Physl987, 75, 3572.

(36) Ledoux, I.; Zyss, JChem. Phys1982 73, 203.

(37) Terhune, R. W.; Maker, P. D.; Savage, C.Rys. Re. Lett 1965
14, 681.

(38) Maker, P. DPhys. Re. A 197Q 1, 923.

(39) Clays, K.; Persoons, &hys. Re. Lett 1991, 66, 2980.

(40) Ledoux, I. Zyss, JChem. Re. 1994 94, 77—-105.

(41) Brasselet, S.; Zyss, J. Opt. Soc. Am. B998 15(1), 257.

(42) Meshulam, G.; Berkovic, G.; Kotler, Z.; Ben-Asuly, A.; Mazor,
R.; Shapiro L.; Khodorkovski, VProceedings 5th International Conference
on Organic Nonlinear OpticsDavos, Switzerland, March 12t1.6th 2000;
Poster E-13.

(43) Toussaere, E. Ph.D. Thesis, Univérédsay—Paris XI, 1993

(44) Heflin, R.; Wong, K. Y.; Zamani-Kamiri, O.; Garito, A. Phys.
Rev. B 1988 38, 1573.

(45) Bubeck, C. Nonlinear Optical Properties of Oligomer<Electronic
Materials—The Oligomer ApproachWVegner, G., Milen, K., Eds.; VCH:
Weinheim, Germany, 1998; Chapter 8, pp 4498.

(46) Joffre, M.; Yaron, D.; Silbey, R.; Zyss, J. Chem. Phys1992
97, 5607.

(47) Pierce, P. B.; Zyss, J.; Joffre, Nroc. SPIE1993 2025 13.

(48) Brasselet, S.; Zyss, ht. J. Nonlin. Opt. Phys. Mater1996 5,
671.

(49) Cho, M.; Kim, H. S.; Jeon, S.-J. Chem. Phys1998 108 7114.

(50) Lee, Y,-K.; Jeon S.-J.; Cho, M. Am. Chem. So&998 120, 10921.

(51) Cho, M.; Ledoux, I.; Zyss, J., et al. SubmitteddtacChem Phys

(52) Philips, J. C.; Van Vechten, J. Rhys. Re. Lett 1969 22, 705.

(53) Levine, B. F.Phys. Re. B 1973 7, 2600.

(54) Marder, S. R.; Berattan, D. N.; Cheng, L. Sciencel99], 252
103.

(55) Unsidd, A. Z. Phys.1928 43, 388.

(56) Robinson, F. N. HBell Syst. Technol..1967, 46, 913.

(57) Flytzanis, C.; Ducuing, Phys. Re. Lett. A1968 26, 315.

(58) Fkyerat, A.; Guelzim, A.; Baert, F.; Zyss, J.;rigaud, A.Phys.
Rev. B 1996 53, 16236.

(59) Zyss, JJ. Chem. Physl979 70, 3333; 3341;). Chem. Physl1979
71, 909.



CEOs for PushkPull Carotenoids

(60) Levenson, R.; Zyss, J. Materials for OptoelectronicsQuillec,
M., Ed.; Kluwer: Dordrecht, The Netherlands, 1996; ChapteflIC pp
341-374.

(61) Kanis, D. R.; Ratner, M. A.; Marks, T. Chem. Re. 1994 94,
195.

(62) Szabo, A.; Ostlund, N. SModern Quantum ChemistryDover
Publication: Mineola, NY, 1996.

(63) Tretiak, S.; Chernyak, V.; Mukamel, £hem. Phys. Let1996
259 55.

(64) Tretiak, S.; Chernyak, V.; Mukamel, $.Chem. Physl1996 105,
8914.

(65) Chernyak, V.; Mukamel, SChem. Phys1996 104, 444.

(66) Tretiak, S.; Chernyak, V.; Mukamel, $.Chem. Physl1996 105,
8914.

(67) Meier, T.; Mukamel, SPhys. Re. Lett 1996 77, 3471.

(68) Meier, T.; Tretiak, S.; Chernyak, V.; Mukamel, Bhys. Re. B
1997, 55, 4960.

(69) Davidson, E. RReduced Density Matrix in Quantum Chemistry

Academic Press: New York, 1976.

(70) McWeeny, R.; Sutcliffe, B. TMethod of Molecular Quantum
Mechanics Academic Press: New York, 1976.

(71) Milliken, R. S.J. Chem Phys1955 23, 1833.

(72) Lowdin, P. OPhys. Re. 1955 97, 1474;Adv. Phys.1956 5, 1.

(73) Spesier, SChem. Re. 1996 96, 1953.

(74) Kanis, D. R.; Ratner, M. A.; Marks, T. Chem. Re. 1994 94,
195.

J. Phys. Chem. A, Vol. 105, No. 23, 2008703

(75) Blanchard-Desce, M.; Runser, C.; Fort, A.; Barzoukas, M.; Lehn,
J.-M.; Bloy, V.; Alain, V. Chem. Phys1995 199, 253.

(76) Blanchard-Desce, M.; Lehn, J.-M.; Barzoukas, M.; Ledoux, I.; Zyss,
J. Chem. Phys1994 181, 281.

(77) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr,;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.
D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick,
D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,
I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A;
Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M.

W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon,

M.; Replogle, E. S.; Pople, J. &aussian 98Gaussian, Inc.: Pittsburgh,
PA, 1998.

(78) Pople, J. A.; Beveridge, D. L.; Dobosh, P.Chem. Phys1967,
47, 2026.

(79) Ridley, J.; Zerner, M. CTheor. Chim. Actdl973 32, 171.

(80) Zerner, M. C.; Loew, G. H.; Kirchner, R. F.; Mueller-Westerhoff,
U. T.J. Am. Chem. S0d98Q 102 589.

(81) Chernyak, V.; Schultz, M. F.; Mukamel, S.; Tretiak, S.; Tsiper, E.

V. J. Chem. Phys200Q 113 36.



