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The first off-resonance hyperpolarizabilities (â(0)) of bisubstituted carotenoids are computed and analyzed
using a quasiparticle, collective electronic oscillators (CEO) representation. The few oscillators which dominate
the response are identified by solving the time dependent Hartree-Fock equations for the reduced single
electron density matrix. The variations of these oscillators and the relevant anharmonicities with bridge length
are studied. The present approach does not suffer from the difficulties which prevent the development of a
simple intuitive picture in the commonly used sum-over-states expressions (i.e., strong interference effects
and unphysical size scaling of various contributions). Displaying the CEO in real space provides an intuitive
picture of the origin of the nonlinear response and the scaling and saturation ofâ(0) for large sizes.

I. Critical Survey of Quantum Computational Techniques
in Molecular Engineering

The design of new molecules with large optical nonlinearities
is crucial for a broad range of applications to optical signal
processing and telecommunication.1-3

Practical implementation and success of a molecular engi-
neering approach rests on the reduction of an abundance of
structural and spectroscopic features down to a limited number
of parameters. These must embody the essence of the mecha-
nisms underlying the optical phenomena of interest and should
furthermore be amenable to chemical intuition so as to provide
practical guidelines toward synthesis and subsequent efficiency
optimization. A priori complex computational methods are then
amenable to much simpler tractable and insightful models.

As most obvious examples of such comprehensive features,
symmetry related considerations have been shown throughout
the development of this field to play a basic role. In the case of
the quadratic process, the well-known constraint of departure
from centro-symmetry provides a stringent prerequisite all the
way to the more elaborate 2-D and 3-D multipolar symmetry
considerations currently under investigation.4-6 Such consid-
erations have indeed highlighted the role of multiple charge
transfer and the importance of the relative positions of the
various donor and acceptor groups as well as that of the
polarizable connecting moieties between such groups. The
paradigm in the domain of quadratic molecular nonlinear optics
is thus currently shifting from the rodlike paranitroaniline dipolar
template to a cube or more generally a rhombohedron with
alternating donor and acceptor functional groups at the corners
and center abiding to tetrahedral geometry, of which the earlier
pNA template appears to be a specific case.4,7 Whereas such
powerful symmetry-related features have indeed provided
stringent guidelines, they still fall short of providing quantitative
information as to the magnitude of phenomena very much like

selection rules in spectroscopy are operational to determine the
allowance of a transition but fail to account for its strength.

It is the purpose of this work to apply thecollectiVe electronic
oscillators(CEO) framework toward the evaluation and inter-
pretation of hyperpolarizabilities.8-10 The classical anharmonic
oscillator picture proposed by Bloembergen11 stands-out as an
early attempt in this direction based on the extension of the
Lorentz-Lorenz harmonic oscillator approach of linear proper-
ties12 which has served throughout almost four decades of
nonlinear optical material research as a useful guideline. It was
precisely the deviation of many organic materials from Miller
δ which had pointed-out the interest of molecular materials for
such applications.13,14 δ is defined as the ratio of theø(2)

quadratic susceptibility of a given material over a cubic product
of its linear ø(1) susceptibilities atω and 2ω. Whereas its
magnitude does not deviate by more than a factor of 2 from an
average value of 2× 109 for inorganic materials, it can surpass
this standard average by as much as 2 orders of magnitude in
organic molecule based compounds. This deviation is an
indication of a much higher inelastic constant for organics than
for inorganics in the anharmonic oscillator picture for electronic
susceptibilities. This model is based on the assumed existence
of a classical anharmonic restoring potential experienced by
electrons as they are driven out of mechanical equilibrium by
an external field. Within this model, polarizabilities of arbitrary
orders can be connected to derivatives of the potential of the
same order taken at mechanical equilibrium which then serve
as empirical parameters. Within this picture, the second order
derivatives lead to three basic linear oscillator frequencies which
appear in frequency dependent resonant denominators. This
somewhat empirical model does not reflect the basically
quantum nature of light-matter interactions at the molecular level
and cannot be expected to provide more than basic trends and
order of magnitude agreements. The model has often been used
for qualitative back of the envelope estimates but was not
considered a rigorous approach with quantitative value.

The CEO approach retains the simplicity of the anharmonic
picture while providing a more relevant quantum picture of
photoinduced electronic displacements in terms of a restricted
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number of quantized electron oscillators. Moreover, these are
not a priori or empirically given as in the earlier classical
anharmonic picture but derived from the full Hamiltonian of
the light-molecule system. Our primary goal in this study is to
explore the possibility of extracting from the full set of electronic
anharmonic oscillator solutions of the Liouville equation driving
the density matrix of the molecular system under coherent
illumination, a limited number of such oscillators capable of
accounting with reasonable accuracy for the overall nonlinear
quadratic susceptibility; we further attach inasmuch as possible
chemically intuitive significance to these relevant oscillator
modes for a given series of molecules deriving from a common
pattern.

Several other approaches are commonly applied toward the
quantitative estimation of nonlinear optical susceptibilities. One
of the most commonly used is the sum-over-state formalism15-17

derived from Ward’s perturbative expression.18 It was however
more successful in accounting for the experimentally determined
magnitudes of susceptibilities than in providing instrumental
guidelines for molecular engineering. This is due to the highly
numerical nature of this approach whereby precision is attached
to the dimension of the Hilbert space of representation and to
the number of singly and eventually multiply excited configura-
tions participating in the expansion. A quantitative analysis
aiming at identifying those states which significantly contribute
to the full perturbation expansion has been proposed and applied
to the quadratic and cubic polarizabilities of standard charge
transfer in aromatic molecules.19,20 Various rational ways to
condense the information have been proposed in order to single
out and extract possibly dominant excited-state contributions
to such an expansion so as to be able to eventually relate these
to dominant molecular features. In view of the empirical
evidence of the crucial role played by charge transfer in
quadratic optical polarizabilities as well as of the occurrence
of a clear linear spectroscopic signature of donor-acceptor
charge transfer in the form of a dominant charge-transfer band
in the UV-visible absorption spectrum of the species of interest,
it was naturally proposed at an early stage to model the pNA
template as well as related rodlike dipolar donor-acceptor
conjugated structures by a two-level system. This approach has
been implemented by way of extending to nonlinear optics
Mulliken’s classical approach of linear properties21,22 in terms
of two or three resonant mesomeric structures, namely, the
neutral state (D T A), the direct (D+ f A-), and eventually
the inverse (D- r A+) mesomeric representations of the
molecule. It is then a simple matter to evaluate higher order
molecular polarizabilities within such a two-state picture leading
to a (2× 2) Hamiltonian with two eigenstates meant to embody
within a so-called “two-level model” essential properties of the
ground and charge transfer states as well as their contribution
to the quadratic polarizabilities.23-26

To fit experimental data into this model and check its validity,
µ01, the transition dipole of the charge transfer excitation (or
equivalently its oscillator strength) and∆µ t µ11 - µ00, the
difference between ground and excited-state dipole moments,
can be inferred indirectly from the experimental values of the
linear and quadratic polarizabilitiesR andâ as modeled within
the two-state frame. Alternatively, they can be obtained more
directly from a rich and purposely redundant combination of
experiments such as real and imaginary linear index measure-
ments in solution and solids by spectroscopic ellipsometry,27

linear absorption spectroscopy, solvatochromism,28 measurement
of the ground-state dipole moment such as the Guggenheim
capacitive method,29-31 or electroabsorption.32,33 â can be

extracted from electric field induced second-harmonic generation
measurements34-36 which, under poling of molecules by an
externally applied voltage, provide the projection of the vector
part of â on the ground-state dipoleµ00. An alternative more
recent technique uses the more versatile harmonic light
scattering37-41 which provides more tensorial information than
the former because of its less symmetry-constrained configu-
ration thanks to the absence of an electric poling field. Validity
of the model can then be checked by comparison of theµ01

and ∆µ values resulting from application of the two-level
expressions to the experimentalR and â values with those
directly inferred from the arsenal of complementary spectro-
scopic and dielectric experiments as listed above. Results are
generally satisfactory in situations whereby the upper harmonic
photon energy 2pω is close enough to the absorption band so
that other potentially contributing excited states can then be
safely ignored. It is however necessary to introduce further line
broadening mechanisms (e.g., excited-state lifetimes and pure
dephasing) to account for the resonant or quasiresonant nature
of the excited-state population process.42,43 The limitations of
such an approach have been recognized at an early stage in the
context of cubic nonlinear processes where contributions to the
cubic hyperpolarizabilityγ of four-photon Ward diagrams
connecting the lower lying excited state to higher lying ones
play an important and sometimes dominant role.44,45

Moreover, and still in the realm of quadratic nonlinearities,
it was shown46-48 on the basis of joint spectroscopic and
symmetry considerations that a minimum of three levels are
needed to account for the quadratic nonlinearity of octupoles
due to the intrinsic 2-fold degeneracy associated with the
irreducible representations of the typicalE (or E′) labeled excited
states participating in the 3-fold symmetry octupolar charge-
transfer process. A formal link between the minimal dimen-
sionality of the excited-state Hilbert representation on the one
hand and the rank of the physical tensorial property of interest
(e.g., 3 for tensorâ) can be found in ref 48. Proposition of other
“minimal basis states” strategies have been inspired by the
development of multipolar charge-transfer candidate molecules
based on a generalized Mulliken scheme involving a neutral
valence band state connected to a series of charge transfer states
according to the multiple substitution pattern of the 2-D and
3-D multipolar molecule.49,50 In particular,â properties of 2-D
3-fold symmetry octupoles have been shown to satisfactorily
abide respectively to a four states (VB-3CT model Hamiltonian
based on the three charge-transfer excited states along the three
blades of the trigonal octupole and the neutral “valence band”
ground state).â properties of 3-D tetrahedral octupoles51 were
described using a five state (VB-5CT model with four charge-
transfer excited states along the four directions from the center
of a tetrahedron to its ends plus the neutral valence band ground
state). In the realm of inorganic solids, both dieletric and
semiconducting, the Philips and Van Vechten model52 such as
applied to chalcopyrites and other classes of oxyde crystals13

and semiconductors14,53is based on the utilization of a reduced
number of structural bonding features such as ionicities and
electron affinities or overlap factors of the connected atoms.
This approach has been successful in outlining an optimal
combination of donor and acceptor atoms to enhanceø(2) for
mineral solids leading to similar trends as were proposed later
in the context of molecules.54

This approach is particularly useful for the near resonant
response but becomes tedious in the off-resonance regime where
many eigenstates contribute. A few-level model which artifi-
cially removes most eigenstates involved in the nonlinear
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response is commonly used. Although different variants of this
approach have proved somehow useful within the reduction
scheme aiming at the identification of a limited set of parameters
believed to play a significant role in optical processes at the
molecular level, their limited validity, mainly restricted to the
field of resonant processes, therefore falls short of providing a
dispersion free guideline that would also apply to the nonreso-
nant parametric regime whereby purely virtual transitions are
participating. A typical approach which may be applicable to
off-resonant conditions, however, not to resonant ones, is based
on Unsöld approximation,55-57 which consists of averaging the
“details” of individual excited states by reducing their full
manifold into a single equivalent excited state, the practical
condensation being dictated by the f-sum rule. It has been shown
in this context that nonlinearities can be connected to multipolar
moments of the ground-state charge density with, for example,
R proportional to the quadrupolar andâ to the octupolar
moment. Recent testing of this approach on the basis of
experimental charge density determinations from X-ray diffrac-
tion studies in single crystals have however pointed out the
limitations of this approach even in the nonresonant regime
where it should be in principle applicable.58

A totally different approach, known as the finite-field method,
has been applied early on59 to the evaluation of static (e.g., zero
frequency) hyperpolarizabilities of charge transfer systems and
is being routinely implemented in quantum computer packages.
Rather than using a perturbative treatment a` la Ward, it is based
on the direct computation (e.g., iterative diagonalization) of a
full self-consistent Hamiltonian accounting for the electronic
systems and nuclei, which includes a dipolar coupling energy
term W ) -µ‚E. It therefore allows us to evaluate all field-
dependent observable quantities, including the induced dipole
µ(E) or the field-dependent energy. The accuracy of this
evaluation depends critically on the numerical precision of the
diagonalization procedure as well as on the dimension and nature
of the atomic orbital space sustaining the molecular orbital wave
function Hilbert space within a Roothan-Hartree-Fock picture.
Differentiation of the three components of the induced dipole
or of the field-dependent energy with respect to the compara-
tively weak applied polarizingE field components leads, in a
Cartesian framework, to the tensorial coefficients of hyperpo-
larizabilities of successive orders (this is best approximated by
considering differences of the induced dipole under symmetrical
finite field steps of different small magnitudes). This method
solely focuses on ground-state wave functions and therefore does
not incorporate explicitly dipolar transitions between various
states, contrary to the perturbative sum over states approach
whereby excited states and their couplings are the basic
ingredients. This method is not designed to help identify those
excited states which contribute significantly to the nonlinearity
of interest. It is nevertheless well tailored for estimating the
magnitudes of static polarizabilities, in contrast with methods
based on a reduced number of excited states which are likely
to provide better results at the vicinity of a transition.

The CEO formalism used here provides a more general
approach which is applicable with equal relevance far from
resonance as well as in quasiresonant configurations, and its
application would be of major interest in particular in order to
account for both nonresonant electrooptic effects and the
corresponding quasiresonant case of second-harmonic genera-
tion. Indeed, applications of electrooptic polymers are mostly
in demand at high bandwidth operation conditions as driven by
an off-resonant molecular polarizabilityâEO(-ω - Ω;ω,Ω) with
ω corresponding to the infrared carrier wavelength in the 1.55

µm window of silica fibers andΩ in the tens of GHz microwave
bandwidth,60 whereas typical charge-transfer resonances, in the
500-600 nm range for nonlinear chromophores tethered to a
transparent polymer backbone, stand far above the infrared
carrier photon energy. Preliminary to electrooptic measurements
which required a somewhat involved permanent poling proce-
dure, it is customary to scan candidate molecules via a second-
harmonic generation experiment in solution which leads to the
âSHG(-2ω;ω,ω) tensor. In sharp contrast withâEO, the âSHG

tensor is quasiresonant as the 2ω frequency comes more closely
to the onset of absorption than in the electrooptic case.
Regardless of other deeper fundamental reasons, the need for a
single framework capable of consistently accounting for both
resonant and off-resonant regimes appears thus particularly
striking in order to be able to match the needs of current
experimental methodology in the realm of electrooptic molecular
engineering.

II. Electronic Oscillators and Molecular Polarizabilities in
the CEO Framework

Assuming a two-level model, the two lowest order off-
resonance polarizabilities have the following form:

µee andµgg are respectively the permanent dipole moments of
the ground (|g >) and the excited (|e >) states,µge is the
transition dipole moment between these two states, andωge is
the transition frequency.1,61 Considering a family of donor-
bridge-acceptor molecules,â(0) has two factors with opposite
scaling as the length of the bridge (the number of double bonds,
N) is increased:µge

2/ωge
2 grows∼ N, whereas (µee - µgg) ∼

1/N. This canceling of a diverging and vanishing factors prevents
an easy intuitive prediction of the evolution of the properties
with N, making it especially difficult to predict and rationalize
the saturation ofâ(0) for large bridge lengths. Moreover,
retaining only few levels may not be justified theoretically in
the off-resonant regime.

The oscillator (quasiparticle) picture used in this article has
numerous conceptual and numerical advantages over the eigen-
state representation8,65 and automatically cures the difficulties
outlined above. Rather than considering a basis set of eigenstates
of the Hamiltonian to represent thewaVe function, we use a
basis of CEO to represent thereduced one electron density
matrix.8,63-66 In contrast with the eigenstate representation, it
has been shown that only a limited number of these oscillators
are involved in the response. We thus obtain a simple, classical,
yet fully microscopic picture of the nonlinear optical process.
The few-oscillator model provides an alternative to the few-
level model. By displaying the oscillators in the atomic basis
set, we obtain a highly intuitive picture of the behavior of the
molecule during the course of the nonlinear optical response.
The relevant regions of the molecule and their couplings and
coherences are clearly identified, resulting in a global picture
of the dynamics of optical excitations in terms of a set of
interacting functional groups. The degree of involvement of
various regions can be visualized, resulting in a new, deeper,
and highly intuitive approach for the design of optical materials.

The CEO approach starts with the reduced single-electron
ground-state density matrix,69,70 defined as

where cn
+ and cm are respectively the Fermi creation and

R(0) ∝
µge

2

ωge
; â(0) ∝

(µee- µgg)µge
2

ωge
2

(1)

Fjnm t 〈ψg|cn
+cm|ψg〉 (2)
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annihilation operators (spin indices have been omitted for
brevity). ψg is the many electron ground-state wave function.
Thenth diagonal element of this matrix (population) represents
the charge of thenth orbital, whereas the off-diagonal element
Fjnm (coherence) is a measure of the chemical bond strength
between atomsn andm.62,71,72

When the molecule is subjected to a time-dependent elec-
tromagnetic field, its density matrix becomes time-dependent
as well:

We then have

Separating the hole-particle (ê) and particle-particle/hole-hole
(T(ê)) contributions toδF, we obtain

The density matrix corresponding to a single Slater determinant
is idempotent:

It immediately follows from eqs 5 and 6 thatT(ê(t)) can be
expressed in terms ofê(t):

I being the unit matrix.
The oscillator variables are the eigenmodes of the linear part

of the time-dependent Hartree-Fock equations (where the terms
with (δF)2are not retained):

with the normalization

The electron-hole part of the density matrix can be expanded
as

The oscillator amplitudes come in complex conjugate pairszR

and zR
/ and satisfy the relationsê-R ) êR

+ andz-R ) zR
/. Here,

êR is an oscillator described by the two operatorêR and êR
+.

These operators may be combined to form real operators that
represent the oscillator coordinates and momenta:

The electronic excitations are now described as classical
anharmonic oscillators with amplitudeszR. Using a basis set
with Nh occupied andNp unoccupied molecular orbitals, there
are Np‚Nh oscillators which come in pairs and satisfy the
following equations of motion:67,68

whereΩR is the oscillator frequency,VR,âγ are the anharmo-
nicities, andµR andµR,â are dipole moments. These classical
equations may be rigorously derived from the quantum molec-
ular Hamiltonian, as shown in Appendix A.

The polarization (the expectation value of the dipole operator)
which is responsible for all optical signals is given by

whereµjâ,γ defined in eq B11 represents the nonlinear depen-
dence of the dipole on oscillator coordinates. All parameters of
eqs 12 and 13 may be obtained from the fully microscopic
Hamiltonian, as shown in Appendix A. Equations 12 and 13
generally have higher order terms (products of morez factors),
but they may be rigorously truncated for the sake of computing
low order polarizabilities. The present truncation is sufficient
for computingâ(0).

Equation 12 can be solved order by order in the external field
ε(t), resulting in the optical response functions. For the linear
response, we have (the superscript denotes the order in the field)

which gives for the static linear polarizability

The second-order response is given by

which yields

whereUR,âγ is defined in eq B10. The summations in eqs 14-
17 run over positive values of the indices.

Equation 17 employs the complete basis set of spin-orbitals.
If the electrons are counted in pairs, a factor 2 must be added
in this formula. This point should become clear in the following
section and the appendix. Moreover, when computing off-
diagonal components of theâ(0) tensor, eq 17 must be
symmetrized over the tensorial components of the incoming
field. Adopting a tensor notationâ(0)i,jk, EjXEk is the incoming
field andEi is the outgoing field.

III. Application to Push -Pull Carotenoids

We have studied the variation of the electronic oscillators
with bridge length for a series of bisubstituted carotenoids
(CAR(j)) with a dimethylamine donor and a two cyano group
for the acceptor (Figure 1). The bridge length (j) was varied
from 2 to 25 double bonds. This system was chosen because it
is typical of polyenic oligomers used in electroluminescent
devices,73 and numerous measurements have been made on these
and similar molecules.74-76

We have considered carotenoids without methyl groups on
the bridge. These groups do not affectâ(0) by more than 10%,
and for the most part, their effect is primarily steric rather than
inductive. Geometry optimization was done at the semiempirical

Fnm(t) t 〈ψg(t)|cn
+cm|ψg(t)〉 (3)

F(t) ) Fj + δF(t) (4)

F(t) ) Fj + ê(t) + T(ê(t)) (5)

F(t) ) F2(t) (6)

T(ê) ) (I/2 - Fj)‚(I - xI - 4ê2) (7)

L|êR〉〉 ) ΩR|êR〉〉 andL|ê-R〉〉 ) -ΩR|ê-R〉〉 (8)

〈〈ê-R|êR〉〉 t Tr(Fj[ê-R, êR]) ) 1 (9)

ê(t) ) ∑
R>0

[êRzR(t) + êR
+ zR

/(t)] (10)

Q̂R ) 1

x2
(êR + êR

+); P̂R ) i

x2
(êR - êR

+) (11)

i
∂

∂t
zR ) ΩRzR - E(t)‚µR - E(t)‚∑

â

µR,âzâ + ∑
âγ

VR,âγzâzγ

(12)

P ) ∑
â

µâzâ + ∑
â,γ

µjâ,γzâzγ (13)

P(1) ) ∑
â

µâzâ
(1) (14)

R(0) ) ∑
â

µâµâ

Ωâ

(15)

P(2) ) 2∑
â

µâzâ
(2) + ∑

â,γ

µjâ,γzâ
(1)zγ

(1) (16)

â(0) ) -2∑
Râγ

UR,âγ

µRµâµγ

ΩRΩâΩγ

+ 3∑
âγ

µâµjâ,γµγ

ΩâΩγ

(17)
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AM1 level using Gaussian 98.77 Intramolecular charge transfer
is very sensitive to the conformation; thus, to better demonstrate
general trends, the aromatic ring and the polyene bridge were
constrained to be planar. The optimization was made to mimic
the chromophore geometry in the material (by choosing the
geometry optimization method and the constraint) even though
the computation is performed for the isolated molecule. The
molecules are oriented along theOxB axis, and hereafter, we
only consider the most important component (âxxx(0)) of the
â(0) tensor.

The INDO/S Hamiltonian78-80 and the dipole operator were
computed in the atomic basis set using the ZINDO code. Each
hydrogen is assigned a single s basis function, whereas carbons
and heteroatoms have 1 s and 3 p atomic orbitals. Because we
consider closed shell configurations, spin variables may be
eliminated and the electrons are counted in pairs. The Hartree-
Fock approximation is used to compute the ground-state reduced
single electron density matrixFjnm. Then the first 50 eigenmodes
of eq 8 are computed with the oblique Lanczos algorithm.81

Several convergence tests were made for the number of modes
and the precision parameters required by the iterative methods.
â(0) varied by less than 5% between these tests.

The eigenmodes were then ranked according to the magnitude
of µR/ΩR and only the first 20 oscillators were retained. All of
the necessary quantities for the calculation ofâ(0) are obtained,
andâ(0) is then computed using the first 1-20 oscillators. This
reveals the degree of involvement of each oscillator in the
second-order response. Figure 2 displays (âk-1(0) - âk(0))
versus k, where âk(0) is â(0) computed with the firstk
oscillators. This figure shows the contribution of each additional
oscillator to CAR(9). Other sizes up to CAR(17) show a very
similar pattern (not shown). The ordering of the oscillators (by
µR/ΩR) does not affect the contribution of each oscillator.

It is remarkable that only two oscillators are dominant for
this series of carotenoids and are responsible for 70-90% of
â(0). The contribution of the second oscillator always has
opposite sign to the first. Hereafter, we denote the first oscillator
ê+ and the secondê-. We have therefore computed the first
off-resonance hyperpolarizability using these two oscillators.
The variation of|VR,âγ| and |µRâ| with the bridge length is
displayed in Figure 3 and given in Table 1. We note that very
few anharmonicities and coupling coefficients are dominant.

The variation ofâ(0) with bridge length is displayed in Figure
4. The lower panel shows the second term of eq 17, representing

the contribution of the coupling dipoleµRâ to â(0) (4), the first
term coming from the anharmonicities (]) and the totalâ(0)
for the two-oscillator model (O). In the upper panel,â(0)
obtained from the two-oscillator model (0) is compared to the
full CEO calculation involving all 50 oscillators (O). For bridge
lengths up to 11 double bonds, the two-oscillator model provides
an adequate description. Both contributions toâ(0) saturate at
about 14 double bonds.

Figure 5 depicts the ground-state density matrix (top row)
and the oscillatorsê+ (middle row) andê- (bottom row) for
CAR(3) (left column), CAR(7) (middle column), and CAR(25)
(right column). They are represented in real space using the
atomic basis set (the coordinates show the atom number as given

Figure 1. Structure and atom labeling of the bisubstituted carotenoid
with a j double bonds bridge CAR(j). The atom labelsn ) 1...2j + 13
are shown in the lower structure.

Figure 2. Contribution of thekth oscillator toâ(0) (e Å3 V-2) for
CAR(9) and CAR(25).

Figure 3. Variation of the anharmonicities (e V) and dipole coupling
coefficients (e Å) with the number of double bonds (the various
contributions may be identified using Table 1).
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in the bottom scheme of Figure 1). In each panel, the bottom
left corner shows the donor, the middle square is the bridge,
and the top right square shows the acceptor.

The ground-state density matrix is similar for all of these
carotenoids. It is pretty much localized and shows no long-
range coherence. We next turn to a closer look at the dominant
electronic modes. Whenêmn ≈ ênm, we have the creation of a
bond between themth and thenth atoms without charge transfer.
Whenêmn > ênm, a photoinduced electron transfer occurs from
themth to thenth atom. Theê+ mode is primarily localized on
the bridge. The interactions between the acceptor/donor and the
bridge decrease as its length grows (visible in the right, left
top, and bottom middle rectangles of each panel).ê+ for
CAR(25) shows that the interaction between electrons along
the bridge has a characteristic size of 15 atoms. This limit
appears in CAR(7). Theê- oscillator has a similar shape but is
more delocalized. It shows a displacement of electrons from

the donor to the bridge for short bridges and from the middle
of the bridge to the acceptor and its vicinity for longer bridges.

Figure 6 displays the variation of the frequencies of the
oscillatorsê+, ê-, andê+3 with the number of double bonds.
They are notedΩ+, Ω-, andΩ+3 (ê+3 is an oscillator defined
below). One can note the red shift of the chromophore with
increasing the number of double bonds.Ω+3 is not displayed
below seven double bonds; the third harmonic is yet not
established because the bridge is not sufficiently long to support
this mode, soê+3 cannot yet be clearly identified.

The two-oscillator model shows the opposing effect of the
ê+ and ê- oscillators. With a better understanding of the
relationship between molecular structure and CEO, it should
be possible to minimize the involvement of theê- oscillator in
â(0). Symmetry properties of the oscillator may be used to that
end, and the magnitude ofâ(0) could then be enhanced by up
to 30% for the present system.

IV. Limitations and Extensions of the Two-Oscillator
Model

Figure 4 clearly shows the range of applicability of the two-
oscillator model. When the bridge length exceeds 10 double
bonds, the computedâ(0) deviates from the full CEO calculation
which includes all oscillators. Figure 2 shows that for CAR(25)
a third mode becomes relevant. The top row of Figure 7 depicts
the three oscillators involved for the longest bridge. The new
oscillator (denotedê+3) appears like the third harmonic ofê+.

The variation of the oscillator parameters and ofâ(0) with j
shown in Figures 3 and 4 is nonmonotonic and shows an
interesting fine structure. For example,â(0) and the anharmo-
nicities have maxima for CAR(11) and CAR(16). This is due
to a splitting of theê- mode at a specific bridge length. The
precise origin of this behavior requires a further study. However,
it does not affect the global trends ofâ(0), and an intuitive
picture of the evolution of this hyperpolarizability may be
developed without taking these effects into account. Ignoring
the splitting of theê- mode results in a more smooth variation
of â(0) with bridge length. This detailed structure originates
from the behavior of the electrons in the polyenic bridge and is
virtually independent of the ends. We thus expect it to be only

TABLE 1: Coupling Coefficient (e Å), Anharmonicities (e V), and â(0) for CAR( j), j ) 2, ..., 25

n µ+,+ µ+,- µ-,- V+,++ V+,+ - V+,- + V+,- - V-,++ V-,+ - V-,- + V-,- - âall â2 â3,4 Ω+ Ω- Ω+3

2 -1.197 -2.525 -1.342 0.013 -2.056 1.107 0.000 -0.474 -0.146 0.145 1.135 0.97 1.00 1.00 3.09 4.84
3 -1.333 -2.878 -1.631 0.055 -1.970 1.248 0.051 -0.361 -0.114 0.215 1.339 1.61 1.40 1.40 2.92 4.56
4 -1.422 -3.142 -1.993 0.097 -1.817 1.304 0.015 -0.257 -0.173 0.203 1.375 2.36 2.32 2.32 2.79 4.35
5 -1.463 -3.174 -2.412 0.138 -1.550 1.207 -0.163 -0.172 -0.352 0.026 0.922 3.16 3.24 3.24 2.69 4.20
6 -1.459 -3.248 -1.480 0.173 -1.435 1.439 0.390 0.002 -0.258 0.522 1.408 3.96 5.47 4.02 2.62 4.10
7 -1.420 -3.781 -2.550 0.200 -1.420 1.509 0.217 0.044 -0.022 0.457 1.979 4.72 5.38 5.38 2.56 4.01 3.89
8 -1.356 -3.949 -3.075 0.216 -1.286 1.504 0.134 0.109 -0.131 0.398 2.030 5.43 6.00 6.00 2.51 3.94 3.75
9 -1.278 -4.045 -3.448 0.224 -1.152 1.490 0.078 0.169 -0.191 0.347 2.012 6.04 6.51 6.51 2.47 3.89 3.62

10 -1.194 -4.064 -3.683 0.224 -1.018 1.457 0.034 0.220 -0.223 0.291 1.893 6.58 7.11 7.41 2.44 3.85 3.51
11 -1.109 -3.540 -3.219 0.220 -0.779 1.223 -0.054 0.222 -0.223 0.115 0.929 6.99 9.18 7.58 2.41 3.82 3.42
12 -1.027 -4.170 -3.713 0.212 -0.832 1.479 0.069 0.324 -0.143 0.282 1.872 7.40 7.22 8.04 2.39 3.82 3.33
13 -0.948 -4.298 -4.010 0.201 -0.765 1.493 0.047 0.364 -0.166 0.261 2.051 7.73 6.97 8.10 2.37 3.80 3.25
14 -0.874 -4.322 -4.046 0.189 -0.691 1.479 0.036 0.394 -0.159 0.231 2.032 8.02 6.78 8.22 2.35 3.79 3.18
15 -0.808 -4.243 -3.948 0.177 -0.611 1.429 0.018 0.409 -0.148 0.184 1.828 8.29 6.24 8.01 2.34 3.78 3.12
16 -0.746 -4.224 -3.410 0.165 -0.555 1.430 0.055 0.438 -0.085 0.195 1.723 8.48 9.60 7.13 2.32 3.78 3.06
17 -0.689 -4.396 -3.703 0.153 -0.524 1.460 0.046 0.468 -0.094 0.186 1.995 8.69 7.54 9.90 2.31 3.78 3.01
18 -0.639 -4.406 -3.623 0.141 -0.479 1.444 0.042 0.483 -0.083 0.166 1.967 8.84 7.03 9.70 2.30 3.77 2.96
19 -0.592 -4.344 -3.471 0.130 -0.432 1.403 0.034 0.486 -0.072 0.140 1.814 9.03 6.97 9.94 2.29 3.77 2.92
20 -0.549 -4.147 -2.773 0.120 -0.383 1.339 0.045 0.478 -0.030 0.120 1.432 9.15 6.87 10.15 2.28 3.77 2.88
21 -0.510 -4.442 -3.170 0.111 -0.376 1.407 0.045 0.516 -0.039 0.131 1.892 9.08 5.51 9.10 2.27 3.77 2.84
22 -0.476 -4.450 -3.095 0.102 -0.347 1.390 0.043 0.522 -0.033 0.119 1.876 9.12 4.95 8.84 2.27 3.76 2.81
23 -0.443 -4.400 -2.999 0.094 -0.318 1.355 0.038 0.519 -0.028 0.104 1.773 9.16 4.08 9.71 2.26 3.76 2.78
24 -0.414 -4.202 -2.275 0.087 -0.283 1.291 0.041 0.504 -0.004 0.087 1.354 9.21 4.52 9.38 2.25 3.76 2.75
25 -0.387 -4.473 -2.676 0.080 -0.280 1.348 0.042 0.534 -0.010 0.095 1.790 9.23 5.26 9.91 2.25 3.76 2.72

Figure 4. Variation of â(0) (e Å3 V-2) with the number of double
bonds.
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weakly affected by the donor and the acceptor. A further study
of the unsubsituted polyenic bridge will be desirable in order
to develop a more accurate, and perhaps simpler, model of the
origin of nonlinearities in such chromophores. The action of
the push-pull groups could then be treated as a small perturba-
tion of the parameters.â(0) computed with these three oscillators
(or four whenê- is splitted) is shown in Figure 8. Because of
molecular stability problems, chromophores used in molecular
engineering for nonlinear optics rarely contain more than 10

double bonds; theê+3 oscillator can be safely neglected for most
NLO applications, and the splitting of theê- mode can be
ignored in the intuitive picture developed here.

In Figure 5 we display

which provide a representation of the density matrix in the
atomic basis set. For a better visualization of the matrix, a
smoothing is done. The simple picture in the atomic representa-
tion was obtained at the expense of losing the sign of the various
contributions. To show the sign ofêmn,Vw, we need to represent
explicitly the various orbitals s of each atom, because a direct
summation of the contribution of all of the orbitals of each atom
is not physically meaningful. A more detailed representation
of Fj and the modesê displayed in Figure 5 can be obtained as
follows. Starting with the INDO/S basis, each element of this
basis can be written asêmn,Vw, whereV andw are respectively
the orbitals of the heavy atomsm andn (s, px, py, and pz). The
hydrogen atoms are not shown. Figure 9 displays the resulting
density matrices. Both axes first display orbitals s from atoms
1 to n and then orbitals px with the atoms in the same order, py

and finally pz. Each mode is now a 4n × 4n rather than then
× n matrix of Figure 5. This representation retains the sign of
the elements. However, we first examine the absolute values

Figure 5. Density matrix for the ground state and the two dominant modes forâ(0). Top row,Fj; middle row,ê+; bottom row,ê-. Left, middle,
and right column: CAR(3), CAR(7), and CAR(25).

Figure 6. Variation of the frequencies (eV) ofê+, ê-, andê+3 with
the number of double bonds.

êmn ) x∑
{V,w}

êmn,Vw
2 (18)
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on a logarithmic scale in order to identify the non relevant parts
of the modes which can be ignored.

We can verify using Figure 9 that theσ system made by the
orbitals{s, px, py} and theπ system made by the orbitals pz are
decoupled inFj as implied by the Hartree-Fock Hamiltonian
(the weak coupling near the dimethyl group is due to its
nonplanarity). Only theπ system, formed by thepz orbitals of
all of the non-hydrogen atoms, is involved in the modes.
Hereafter we only represent the relevant part (pz, pz) of the
density matrix, neglecting the other elements, and also show
the sign of the elements. The new representation is compared

with the previous atomic representation in Figure 7. The atomic
representation removes all of the nodes of theê modes. These
nodes show a highly nontrivial and interesting behavior of the
electrons along the bridge. The atomic representation allows a
quick visualization of which parts of the molecule are involved
in the mode, but the orbital representation provides additional
most valuable information. Theê+ mode has two symmetry
axes. The three parts of the modeê+3 are symmetric with respect
to the diagonal elements but are antisymmetric toward each
other. The ê- mode is antisymmetric with respect to the
population elements axis. It is acorrelation mode, in which
only the bonds are involved and the mean positions of the
electrons are unchanged. The symmetry properties are sketched
schematically at the bottom row of Figure 7. This picture closely
resembles the electromagnetic modes in cavities. A good
understanding of these modes could be most useful for a
description of electronic motions in polyenic bridges and for
predicting the effects of push-pull groups.

Figure 10 displays the variation of the diagonal elements
(populations) with atom number for CAR(7) and CAR(25). The
trace ofFj is equal to the number of electrons on the external
shell, and the trace of theê matrix vanishes. These properties
are not apparent in the figure because the hydrogen atoms are
not displayed. Atoms 1-9 are the donor group, followed by
the polyenic bridge, and the last four atoms are the acceptor.
(The atom numbers are given in Figure 1.) The top panel shows
the electronic charge of the pz orbitals of the heavy atoms. The
envelope ofê+ and its third harmonicê+3 is clearly shown.
The antisymmetry along the diagonal axis of the modeê- should

Figure 7. ê+, ê+3, andê- oscillators of CAR(25). Upper row,êmn in the atomic basis set; middle row,êmn,PzPz; bottom row, illustration of symmetry
properties.

Figure 8. Variation of â(0) computed with an extended number of
oscillators with bridge length. (â(0): e Å3 V-2).
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give a zero value to all diagonal elements. This is pretty much
the case in the left part of the bridge. However the right part is
modulated by the acceptor. Nevertheless the amplitude remains
very weak. The bottom three panels reveal the role of charge
transfer in the nonlinear response.

Calculations performed on longer molecules (up to 40 double
bonds) show that the present picture remains valid. As the bridge
length grows, the number of anharmonic couplings that make
a significant contribution to the response decreases, further
simplifying the physical picture of the nonlinear response.

V. Discussion

The generic push-pull carotenoid system studied in this
article clearly shows that the first optical hyperpolarizability
can be described using a small number of oscillators: two
oscillators are enough for chromophores commonly used in NLO
engineering. For longer molecules, an additional oscillator
should be included. The oscillatory behavior withj does not
prevent an intuitive CEO picture.

The most important advantage of the present picture is that
it provides a link between the first phenomenological description
of optical nonlinearities made by Bloembergen and a rigorous
theoretical approach based on a full quantum chemistry calcula-
tion. The present work establishes a firm basis and extends the
early empirical descriptions of nonlinear processes, and the
dynamic CEO picture is more intuitive than the static eigenstate
representation. The equation of motion of the oscillators is
classical. The unphysical scalings are removed, and the number
of oscillators involved in the calculation of the response remains

finite as the molecular size is increased. Moreover, the real-
space representation of the eigenmodes allows an easy and
highly intuitive understanding of the regions involved. It can
be useful for manipulating the properties of the chromophore
(symmetry or other) in order to remove or enhance a mode.

The CEO representation is a highly nonlinear transformation
of the eigenstate representation of the optical response. Each
oscillator represents a manifold of transitions involving multiple
electron-hole pairs. It is therefore not possible to draw a one-
to-one correspondence between the few-oscillator model and
the popular scheme where the sum over states expressions is
truncated to include only a few dominant states. Generally the
dominant-state approach cannot be justified for off-resonant
response where many states contribute. However, the few-
oscillator picture works very well. The absence of a simple
connection is the reason we need a new language. If there was
such a connection, a new language would not be necessary. At
the single excitation level, one can assign each oscillator with
one state. However, the CEO also includes (approximately)
infinite harmonic ladders of these state.

An improved picture may be possible in which the well-
known properties (e.g., boundary conditions of the modes or
coupling parameters) of the electrons in the bridge are perturbed
by the donor and acceptor groups. Such a study might reveal
deeper properties of the molecules which appear here as the
quasiperiodic splitting of theê- mode or the nodes and the
symmetry properties of modes.

This study ofâ(0) may be extended to higher nonlinearities
such asγ(0). This second hyperpolarizability is very important
for nonlinear optics, and a similar oscillator picture could be
useful for the investigation of centrosymmetric molecules with
strong cubic polarizabilities.
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Appendix A: The CEO Equations

We consider a system described by the following general
molecular electronic Hamiltonian:62

Figure 9. Representation ofFj andê+ for CAR(15) in the orbital basis set.

Figure 10. Diagonal elements (êmm) of the density matrixesFj, ê+,
ê+3, ê-, for CAR(7) (left column) and CAR(25) (right column).
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and

t is the core-Hamiltonian describing the kinetic energy and
nuclear attraction of an electron, and〈ij |kl〉 describe the
electromagnetical interactions between the electrons.

Here cn
+ and cm are respectively the Fermi creation and

annihilation operators with anticommutation relations

The ground-state Hartree-Fock density matrixFj satisfies

where the Fock operator is

with

Ĵ is the Coulomb operator, andK̂ is the exchange operator.
When the molecule interacts with a time-dependent electro-

magnetic field, its density matrix becomes time-dependent as
well and can be written as

Separating the hole-particle (ê) and particle-particle/hole-
hole (T(ê)) contributions, we obtain eq 5. Using eqs 5 and 6,
we have

T(ê(t)) can be expressed in terms ofê(t) (eq 7). For computing
the second-order response, it is sufficient to adopt the following
approximation:

The time dependent Hartree-Fock equations of the density
matrix are

Projecting into the particle-hole subspace, we obtain the
following equation of motion:

where L is a superoperatorin the Liouville-von Neumann
space given by

and

is the nonlinear part of the equation.
The time dependent polarization responsible for all of the

optical properties of the molecule is given by

ΩR are the eigenvalues of eq 8, and we have the relationsê-R

) êR
+ and z-R ) z_R

/. The oscillator variables are the eigen-
modes of the linear part of eq 12, and they satisfy eq 8.
Combining eqs 10 and A14, we find thatzR satisfies (12) with

We next expandz in powers of the external field:

We further define

For the static second-order response, eq 12 assumes the form

The matricesFj, µ, andêR are real, andV is a real tetradic
operator. They satisfy

Appendix B: Computation of Polarizabilities

The TDHF equations may be solved by expanding the density
matrix in power of the external field:

whereT(j)(ê) may be expressed in terms ofê(j) using eq 12. We
thus obtain for thejth order polarization

where

and

i
∂ê
∂t

- Lê ) R(ê)p-h - E(t)‚[µ,Fj] (A14)

Lê ) [F(Fj),ê] + [V(ê),Fj] (A15)

R(ê) ) [F(ê),ê + T(ê)] + [F(T(ê)),Fj + ê] - E[µ,ê + T(ê)]
(A16)

P(t) ) Tr(µδF(t)) ) Tr{µ[ê(t) + T(ê(t))]} (A17)

µR ) Tr([Fj,ê-R][µ,Fj]) (A18)

µR,â ) Tr([Fj,ê-R][µ,êâ]) (A19)

VR,âγ ) Tr{[Fj,ê-R]([V(êâ),êγ] + [V(12[[êâ,Fj],êγ]),Fj])} (A20)

z ) z(1) + z(2) + z(3) + ... (A21)

µ̃â t Tr(µêâ); µ̃âγ t
1
2
Tr(µ[[êâ,Fj],êγ]) (A22)

ΩRzR ) E‚µR + E‚∑
â

µR,âzâ - ∑
âγ

VR,âγzâzγ (A23)

µR ) µ-R ) µ̃R andµ̃-Râ ) 1
2

µR,â (A24)

ê ) ê(1) + ê(2) + ... andT(ê) ) T(2)(ê) + T(3)(ê) + ... (B1)

P(j)(t) ) Tr(µδF(j)) (B2)

δF(j)(t) ) ê(j)(t) + T(j)(ê(t)) (B3)

T(1)(t) ) 0 andT(2)(t) ) (I - 2Fj)‚(ê(1)(t))2 (B4)

Ĥ ) ∑
mnσ

tmncmσ
+ cnσ +

∑
mnklσσ′

〈nm|kl〉cmσ
+ cnσ′

+ ckσ′clσ - ε(t)∑
mnσ

µmncmσ
+ cnσ′ (A1)

tnm ) ∫øn
/(1)(∇1

2 - ∑
A

ZA

|r1 - RA|)øm(1) dr1 (A2)

〈ij |kl〉 ) ∫øi
/(1)øj

/(2)øk(1)øl(2)

|r1 - r2|
dr1 dr2 (A3)

{ci,cj
+} ) δi,j; {ci,cj} ) 0 where{a,b} ) ab + ba (A4)

[F(Fj),Fj] ) 0 (A5)

F(Fj) ) t + V(Fj) (A6)

V̂ ) Ĵ - K̂ (A7)

(JFj)ij ) (ij |kl)Fjkl (A8)

(KFj)ij ) (ik|jl )Fjkl (A9)

F(t) ) Fj + δF(t) (A10)

ê ) [[ê,Fj],Fj] (A11)

T(ê) ≈ 1
2
[[ê,Fj],ê] (A12)

i
∂F(t)
∂t

) i
∂δF(t)

∂t
) [F(F),F] - E(t)‚[µ,F] (A13)
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We need to solve the following linear inhomogeneous equation:

whereη(j)(t) are

and

It can be shown that the density matrix may be expanded as eq
10 with eq 7. In this expansion,R is an oscillator described by
the two operatorsêR and êR

+. These operators are related to
the oscillator coordinates and the momenta by eq 11.

Equation 13 for the two lowest order static polarizations gives
expressions 14 and 16. From eq A23, we have forR > 0

and

Equation 15 for the off-resonantR(0) t R(0;0) is obtained by
substituting eq B8 in eq 14. Substituting eqs B8 and B9 into eq
16, results in eq 17 forâ(0) t â(0;0,0).

Here

and

Appendix C: Units

To get a convenient order of magnitude for the quantities
computed, we used the following units basis:{e, V, Å}. Here
are the relationships with other units:

(1) First hyperpolarizability:
â(0) and its contributions are displayed in e Å3 V-2.
1.0 e Å3 V-2 T 43.2 × 10-30 esu and 1.0× 10-30 esuT

2.31× 10-2 e Å3 V-2.
(2) Dipole moment:
Dipole moments are displayed in e Å.
1.0 e Å T 4.81 D and 1.0 DT 2.08× 10-1 e Å.
1.0 e ÅT 4.81× 10-18 esu cm and 1.0× 10-18 esu cmT

2.08× 10-1e Å.
(3) Energies and frequencies are in eV.
(4) The charge is displayed in units of the electron charge, e.
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